Statistical Analysis of Features and Classifiers in Identifying Nodules and Its T Staging in Lung Ct Images

نویسنده

  • G. Niranjana
چکیده

Lung cancer is the most common disease with greater morality rate. Computed Tomography (CT) images are used for early diagnosis of lung cancer with the help of CAD system. Selection of effective feature set and proper classifier for medical images where machine learning techniques are used is a challenging task. Texture analysis of computed tomography (CT) images is one of the important preliminary stages in the detection and classification for lung cancer. The image texture is characterized by Haralick texture with variety of statistical measures. The extracted texture feature values are used by a CAD to differentiate its type as benign or malignant. This paper aims to compare experimental results of 18 features extracted by using Gray Level Co occurrence Matrix (GLCM) and analyses the different classifiers that can be used for classification of nodule as benign or malignant. Measuring the statistical parameters of the nodule is crucial for determining the T stage of the nodule. This paper also analysis the statistical parameters and reported the contribution of minimal feature set for classification and staging. GLCM features are used for classification and Geometric features used are used for T staging. For these analysis 23 images dataset of different types of cancer is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

طراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندول‌های ریوی در تصاویر سی‌تی ‌اسکن

Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...

متن کامل

A New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients

Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...

متن کامل

Diagnosis of COVID-19 Disease Using Lung CT-scan Image Processing Techniques

Introduction: Today, several methods are used for detecting COVID-19 such as disease-related clinical symptoms, and more accurate diagnostic methods like lung CT-scan imaging. This study aimed to achieve an accurate diagnostic method for intelligent and automatic diagnosis of COVID-19 using lung CT-scan image processing techniques and utilize the results of this method as an accurate diagnostic...

متن کامل

Diagnosis of COVID-19 Disease Using Lung CT-scan Image Processing Techniques

Introduction: Today, several methods are used for detecting COVID-19 such as disease-related clinical symptoms, and more accurate diagnostic methods like lung CT-scan imaging. This study aimed to achieve an accurate diagnostic method for intelligent and automatic diagnosis of COVID-19 using lung CT-scan image processing techniques and utilize the results of this method as an accurate diagnostic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016